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Great progress has been made toward understanding the properties of single neurons,
yet the principles underlying interactions between neurons remain poorly understood.
Given that connectivity in the neocortex is locally dense through both horizontal and
vertical connections, it is of particular importance to characterize the activity structure
of local populations of neurons arranged in three dimensions. However, techniques for
simultaneously measuring microcircuit activity are lacking. We developed an in vivo 3D
high-speed, random-access two-photon microscope that is capable of simultaneous 3D
motion tracking. This allows imaging from hundreds of neurons at several hundred Hz,
while monitoring tissue movement. Given that motion will induce common artifacts across
the population, accurate motion tracking is absolutely necessary for studying population
activity with random-access based imaging methods. We demonstrate the potential of
this imaging technique by measuring the correlation structure of large populations of
nearby neurons in the mouse visual cortex, and find that the microcircuit correlation
structure is stimulus-dependent. Three-dimensional random access multiphoton imaging
with concurrent motion tracking provides a novel, powerful method to characterize the
microcircuit activity in vivo.
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INTRODUCTION

The outermost part of the brain—the cerebral cortex—is a 3D
sheet of neural tissue that contains billions of nerve cells com-
municating through trillions of connections. Research over the
last five decades has shown that single neurons in the cortex per-
form complex and subtle computations. However, little is known
about how cortical neurons interact with each other to acquire
their functional properties and how ensemble activity patterns are
organized to process information.

Interestingly, anatomical connectivity between cortical neu-
rons is locally dense via both vertical and horizontal connections
(Gilbert and Kelly, 1975; Douglas and Martin, 2004; Song et al.,
2005; Yoshimura et al., 2005; Thomson and Lamy, 2007; Otsuka
and Kawaguchi, 2009; Yu et al., 2009). Moreover, the local wiring
of the cortex is remarkably specific, demonstrating local higher
order connectivity motifs (Song et al., 2005; Perin et al., 2011) and
increased connection probability between more similarly tuned
neurons (Ko et al., 2011, 2013). With the development of high
throughput electron microscopy of brain tissue, the complete
wiring diagrams of small volumes of neocortex may be available
in a few years (Denk and Horstmann, 2004; Livet et al., 2007;
Bock et al., 2011; Helmstaedter et al., 2013). Given the locally
dense, specific, and three-dimensional nature of cortical connec-
tivity, it is important to simultaneously monitor the activity of a
large number of nearby neurons in 3D to link our understanding
of anatomical connectivity (structure) with population activity

(function) in order to unravel the underlying computations. For
example, measuring the simultaneous activity of large popula-
tions of neurons in vivo is necessary for deciphering the principles
of population coding. Theoretical work has shown that the pre-
cise structure of correlated neuronal variability, so called noise
correlations, can significantly enhance or diminish the informa-
tion capacity of neural ensembles (Zohary et al., 1994; Abbott and
Dayan, 1999; Sompolinsky et al., 2001; Wilke and Eurich, 2002;
Averbeck and Lee, 2004; Shamir and Sompolinsky, 2004; Ecker
et al., 2011). However, these studies typically rely on extrapolat-
ing the population correlation structure from data recorded with
pairs of neurons, but the assumptions behind this extrapolation
can dramatically change the results (Shamir and Sompolinsky,
2006; Ecker et al., 2011; Pernice et al., 2013). Therefore, it is
important to decode real populations to validate these theoret-
ical studies and ultimately determine the impact of correlations
on population coding (Graf et al., 2011; Berens et al.,, 2012).
Simultaneously recording the activity of large population of neu-
rons from local microcircuits has been hindered by the lack of
appropriate methods.

Electrophysiology, while providing excellent temporal reso-
lution, is limited in terms of scalability, recording density, uti-
lizing fluorescent cell markers, and the precise localization of
neurons. Alternatively, two-photon fluorescence laser-scanning
microscopy (Denk et al., 1990) and population-staining methods
(Stosiek et al., 2003) enable mapping the properties of all cells in
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a local volume with excellent spatial resolution. However, tradi-
tional in vivo two-photon microscopy works by moving mechan-
ical components, which limits temporal resolution due to inertia.
Moreover, scanning axially is even more inertia-limited due to the
mass of the objective lens (e.g., 10 Hz) (Gobel et al., 2007). So
while all the cells in a volume can be characterized independently,
these methods are limited for studying their coordinated activity
and interactions.

Three-dimensional two-photon imaging using acousto-optic
deflectors (AODs) circumvents these limitations by allowing fast
random-access 3D imaging (Reddy and Saggau, 2005; Reddy
et al.,, 2008). Inertia-free scanning within a single plane has
been applied successfully for in vivo studies using two acousto-
optic deflectors (Grewe et al., 2010) and spatial light modulators
(Nikolenko et al., 2008). Inertia free imaging also has the benefit
of hopping directly between neurons, and thus not wasting time
imaging from locations that are not of interest (i.e., neuropil).
More recently, 3D-RAMP scanning with AODs was demonstrated
in vivo to measure the orientation tuning preference of neu-
rons (Katona et al., 2012). However, one major drawback of
using random access scanning for in vivo research is that with-
out an image sequence (Katona et al., 2012), it is challenging to
determine if coordinated changes in fluorescence across the pop-
ulation are attributable to neural activity or movement. Because
the main purpose of population recording is to characterize the
coordinated ensemble activity, this is a critical limitation.

Here we describe the design of a microscope for in vivo stud-
ies using 3D random-access multi-photon (3D-RAMP) excitation
that can perform neural population recording and simultane-
ous 3D motion tracking of the tissue by interleaving imaging
from orthogonal planes. This was made possible with a custom
field programmable gate array (FPGA)-based real time controller
capable of continuously scanning complex patterns. The micro-
scope employs four acousto-optic deflectors instead of traditional
galvanometric and piezo scanning devices. Therefore, it can gen-
erate any desired 3D scanning path with a temporal resolution
that is one to two orders of magnitude faster than current in vivo
3D two-photon imaging systems. We used this method to record
the activity from populations of up to 411 cells in layers 2/3 of the
primary visual cortex of the mouse and characterized the activity
structure of local populations of neurons.

In agreement with previous reports (Kohn and Smith, 2005;
Ecker et al., 2010; Denman and Contreras, 2013) we found higher
noise correlations for pairs of neurons with similar tuning pref-
erence than more dissimilarly tuned pairs. In addition, we found
a stimulus dependence of the correlation structure, where pre-
sentation of a stimulus near the preferred orientation of a pair
of cells caused higher noise correlations than presentation of
non-preferred stimuli.

MATERIALS AND METHODS

3D-RAMP MICROSCOPE

The 3D-RAMP scanner contains four AODs (OAD-1121, Isomet,
VA) using TiO; as the acousto-optical medium. The AODs are
connected by 1:1 telescopes (200 mm focal length lenses) to opti-
cally map the pivot points of all deflectors into the back focal
plane of the objective (Figure 1). The light source is a tunable

ultrafast Ti:S laser (Chameleon Vision II, Coherent). The over-
all system efficiency (output/input power) is about 14%. The
expanded laser beam diameter is 10 mm throughout, and imag-
ing is performed with a water immersion objective (20x 1.0NA,
Olympus, Japan) mounted to a modified open frame micro-
scope (Moveable Objective Microscope, Sutter Instruments). The
collection path is split by a dichroic mirror into the longer
wavelength (red channel) and shorter wavelength (green chan-
nel) and measured with two high quantum efficiency GaAsP
photomultiplier tubes (H7422P-MOD, Hamamatsu, Japan).

Three-dimensional imaging is performed using a pair of AODs
for both the X and Y axis (Reddy et al., 2008). By driving a
deflector with a linear frequency sweep (chirp), a beam with
cylindrical phase is generated with a time-dependent mean angle
(Figure 1B1). Pairing two deflectors, each with the sound propa-
gating in opposite directions, the time-dependent component can
be removed and the cylindrical phase curvature doubled. In this
scheme, a difference in the frequencies creates a desired residual
lateral offset. In order to achieve spherical phase curvature and
lateral offset in the perpendicular direction, an orthogonal pair
of deflectors was used (Figure 1B2). The same frequency ramp
was used across all four AODs, creating the spherical curvature
required for axial scanning and independent control of lateral
positioning (Figure 1B3). This scheme allows moving the two-
photon excitation point arbitrarily in three dimensions. To hop
to a new location, the appropriate acoustic signal is presented to
the deflectors, and the collected signal is blanked for the time
it takes the new sound to propagate across the deflector crystal
(10 ps). The dwell time was set to 10 s, giving a time per point of
20 s or an overall rate of 50,000 samples per second. This optical
configuration results in a field-of-view of 200 x 200 . m laterally
and 100 pm axially. More details of the principles underlying 3D-
RAMP microscopy have been described previously (Reddy and
Saggau, 2005; Reddy et al., 2008) and a photograph of the system
can be found in Supplementary Figure 1. In our system, a mirror
on a motorized mount allowed remote switching of the illumi-
nation path between a traditional galvanometric scanning system
and the 3D-RAMP scanner.

To ensure correct alignment and function of the deflectors, we
measured the wavefront tilt and curvature entering the back-focal
aperture of the objective lens using a wavefront sensor (WFS150-
7AR, Thorlabs, Newton, NJ). We swept each individual AOD back
and forth through its frequency range while holding the others at
the center frequency. This confirmed that the wavefront tilt per
MHz of frequency change was the same for each AOD, which
would not be the case if the telescopes were misadjusted. In addi-
tion, this procedure verified that each AOD tilted only in either
the X or Y axis and that there was no rotational misalignment.
The tilting procedure was repeated with the beam diameter lim-
ited to 1 mm and imaged with a standard camera to verify that
all AODs were optically pivoting in the backfocal plane, which
verified the AOD placement along the optical path.

Another important alignment procedure was to repeatedly
hop between the center frequency and a frequency with very low
efficiency for each AOD while focusing in fluorescein solution,
in order to time the latency from the hop time to the change in
fluorescence. When each AOD was correctly centered along its
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FIGURE 1 | (A) Layout of 3D-RAMP Microscope. The expanded beam of
a pulsed Ti:S laser is shaped in its collimation and angle at the
backfocal plane of the objective lens by a chain of 4 AODs and
telescopes, resulting in 3D positioned focus. (B) Principle of controlling
the axial position of the laser focus. For clarity, a side and a top view
of the scanning unit are shown. The direction and frequency of the
chirped sound waves at two pairs of AODs creates the desired focal
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offset. Note that for simplicity a case with no desired lateral offset is
shown here. This helps visualizing how the 2nd AOD of every pair
compensates for the unwanted lateral displacement of the beam by the
chirp. (C) Point spread function. Square figure to the left shows PSF in
horizontal plane and figure to right shows axial section through PSF (D)
Spiny pollen imaged at 3 axial depths. Number to the left indicates
offset from natural focal plane.

acoustic axis the latency was the same and approximately equal
to the propagation time across the AOD (10 s with our AODs).

CONTROL MODULE
To efficiently perform in vivo 3D-RAMP experiments, we needed
a control system that could generate complex scan patterns con-
tinuously for long periods of time and simultaneously record
voltage traces such as electrophysiology. We developed a new
control system and matching user-interface software. Frequency
ramps are generated using a four-channel digital synthesis board
(AD9959 Evaluation Board, Analog Devices, Norwood, MA),
which is updated synchronously across all channels. Two cas-
caded RF amplifiers (IA100 and DA104-2, Isomet) provide the
1.5 watts of RF power required to efficiently drive the AODs.
The parameters for the subsequent ramp are clocked into the
AD9959 during the hopping and dwell time of the previous
point by custom firmware running on a field-programmable
gate array (FPGA, PXlIe-7965R with NI-5751 adapter module,
National Instruments, Austin, TX) through a digital interface.
The 16-channel, 14-bit, 50-MHz adapter module for the FPGA
acquires the photomultiplier tube and electrophysiology data,
which is then demultiplexed and pre-processed by the FPGA.
Demultiplexing the optical signals involves blanking the data dur-
ing the transition from one point to another and binning it during
the dwell time. The FPGA then sorts the data into points from the
functional scan and points from the motion planes (see Motion
Tracking below). Voltage traces from the continuous channels
(e.g., electrophysiology) are downsampled to the scanning rate
(50kHz). Running the code on an FPGA guarantees the difficult
real time constraints required for this type of system are met.
The corresponding user interface software allows one to per-
form a volume scan and select cells using a semi-supervised

100 sec

FIGURE 2 | Visualization of a scanning path and interleaved motion
tracking planes. (A) The location of all cells is labeled green and the
scanning path is labeled blue. Interleaved into this scanning path are points
located in two orthogonal motion tracking planes placed over a vessel and
neuroglia. Motion tracking is computed from these orthogonal image
planes in 3D (see Methods for details). (B) Movement traces from a
session with little lateral movement but axial drift. (C) Movement traces
from a session with large abrupt movements.

method that identifies the three dimensional center of neurons
(see Supplementary Movie 1 for visualization of experimental
paradigm). It is important to record signals from the center of the
cell bodies in order to minimize neuropil contamination (Gobel
and Helmchen, 2007). The user interface also allows placing
motion-tracking planes in three dimensions over high contrast
objects (Figure 2). During imaging, all electrical channels and the
calcium fluorescence traces can be visualized in real-time.

SURGICAL METHODS, DYE LOADING, AND ELECTROPHYSIOLOGICAL
RECORDING

All procedures performed on mice were conducted in accor-
dance with the ethical guidelines of the National Institutes of
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Health and were approved by the Baylor College of Medicine
IACUC. Male C57CL/6] mice (age: p40—p60) were initially anes-
thetized with Isoflurane (3%) and anesthesia was maintained by
either Isoflurane (2%) or a mixture of Fentanyl (0.05mg/kg),
Midazolam (5 mg/kg), and Medetomidin (0.5 mg/kg), with anes-
thesia boosts of half the initial dose administered every 3 h. The
temperature of the mouse was maintained between 36.5 and
37.5°C throughout the whole procedure using a homeothermic
blanket system (Harvard Instruments). In some experiments,
the cardiac and respiratory rate were simultaneously monitored
and recorded using a MouseOx (Starr Life Sciences Corp). Part
of the skin over the skull was resected and the location of the
craniotomy determined (approximately 2.5-2.9 mm lateral to the
mid-line sagittal suture and anterior to the Lambda suture).
A head-post bar was secured to the skull using bone cement,
then a 0.5-1.5mm craniotomy was performed over the region
of interest. The mouse was transferred to a traditional galvano-
metric imaging system with a 10x objective (Nikon CFI Plan
Apo 10x) for two-photon guided injection of the membrane-
permeable calcium indicator Oregon green 488 BAPTA-1 AM
(OGB-1, Invitrogen) and the astrocyte specific fluorescent dye
sulforhodamine 101 (SR-101, Invitrogen). Dye solution was pre-
pared as previously described (Garaschuk et al., 2006) and bolus
loading injections were performed (Wu and Saggau, 1994; Stosiek
et al., 2003). We used a pulsed low pressure protocol with a
glass micropipette and a computer controlled pressure system
(Picospritzer II) to inject ~300 wm below the surface of the cor-
tex (Garaschuk et al., 2006). The window was then sealed using a
glass coverslip secured with dental cement. After allowing 1 h for
dye uptake, each injection resulted in a stained area of <400 pm
in diameter.

To perform simultaneous juxtacellular recordings during two-
photon calcium imaging recordings we replaced sulforhodamine
101 with Alexa Fluor 594 (Invitrogen) and used glass pipettes with
5-7 M2 resistance for targeted two-photon guided recording as
previously described (Komai et al., 2006).

MOTION TRACKING

To track the motion of the preparation during functional scan-
ning, the 3D-RAMP scanner interleaves points on image planes
with the functional calcium traces. This is performed by alterna-
tively sampling a sequence of points on neurons and then a point
from one of two motion-tracking planes, which are positioned
over high contrast structures such as blood vessels or astrocytes
(Figure 2). In order to track motion in 3D, two planes are used;
one oriented parallel to the cortical surface and another per-
pendicular to it. The frame rate and resolution of these planes
can be chosen based on the desired spatial and temporal accu-
racy. By interleaving the functional scanning coordinates with
the motion tracking planes we acquire simultaneous functional
data and structural movies (see Supplementary Movie 2). In
practice we found imaging two 10 x 10 point planes spanning
high contrast objects such as astrocytes or blood vessels at 10 Hz
provided sufficient tracking accuracy without taking excessive
imaging time from acquiring functional activity. These resolu-
tions and speeds can resolve sub-micrometer movement while
having enough bandwidth to detect both slow drifts and abrupt
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FIGURE 3 | The influence of the cardiac cycle on movement and
calcium fluorescence. (A) Spectrogram of the tissue movement computed
from motion tracking planes (e.g., Figure 2A, see methods for details)
shows a prominent narrow frequency band that changes over time
between 7 and 10 Hz. The corresponding black trace is the heart rate
measured simultaneously with a cardiac monitor. The frequency of the
tissue movement matches the heart rate. A second frequency band around
3Hz corresponds to the respiratory cycle, which was also monitored
simultaneously and is shown with a black trace. The inset on the right
shows the average spectrum over the course of the experiment and shows
both these ranges having substantially more power than at other
frequencies. (B) The same analysis performed on the first principal
component of all fluorescence traces from 76 cells recorded during this
session shows that the functional traces are also influenced by the cardiac
and respiratory cycles. (C) Spectrogram of the average neuropil from the
motion planes. The cardiovascular cycle does not affect the neuropil. (D)
Estimated movement for this session. Despite the fact the movement is
less than a micron it is sufficient to influence the traces.

movements. Our custom user interface software allows visualiz-
ing the motion planes in real time during experiments. In the
experiments where we wanted to compare the externally mea-
sured cardiac cycle to the motion estimate, we performed motion
tracking at 25 Hz in order to adequately capture the cardiac cycle
at 7-10 Hz (Figure 3).

Inferring a single motion estimate from these data is not
straightforward for several reasons. Firstly, given that we record
both a horizontal and vertical plane, which can share information
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about horizontal movement, these two planes must be combined
together. Secondly, each plane collects two channels filtered at
different wavelengths (called red and green below), each with dif-
ferent amounts of noise. Thirdly, because each plane contains
only 100 pixels and each pixel is only imaged for 10 s, the
shot noise must be accounted for in order to optimally estimate
position from all of this information. To solve this we devel-
oped a probabilistic motion-tracking algorithm that accounted
for these issues. For each frame, the algorithm computes the
three-dimensional offset of the tissue relative to the first frame.

We converted the recorded voltages into photon counts. The
voltage measured by the photomultiplier tube is proportional to
the photon rate, which for a fixed integration time of 10 ps is
proportional to the photon count. For a given sampling location,
the number of photons should be approximately a Poisson distri-
bution with mean equal to variance (Wilt et al., 2013). The raw
voltage was rescaled by a coefficient, which made the slope of the
mean-variance plot for all the points of interest equal to unity. In
practice, the photon rate is not perfectly constant over the course
of an experiment, due to movement or neuropil fluorescence. We
therefore computed the shot-noise variance as half the variance
of the difference between sequential samples, which removes long
timescale contributions from the total variance.

Movement was computed relative to a pair of orthogonal refer-
ences, which define the mean photon count for each pixel in each
plane and channel. These reference planes were initialized by aver-
aging motion tracking movies over the first 10s, then after the
first iteration of the following motion-tracking algorithm, were
recomputed with the whole stabilized sequence.

For each time step, we computed the likelihood as a function
of 3D position offset. Because the shot noise for each image plane
and channel is independent, the likelihood can be factorized into
likelihood functions for each plane:

p(sh s, s, SSIx,y, 2z u) =p(shlx, v,z u}) p (s‘fl|x, V.2 uﬁ)
p(shlx, v,z ul) p (sh1x. v, 22 143

The variables s corresponds to the image planes from a time step
and u is the reference image planes defining zero offset. The vari-
ables x, y, z correspond to three-dimensional offsets relative to the
reference plane. Subscripts indicate either the horizontal (h) or
vertical (v) plane whereas superscripts indicate red (r) or green
(g) channels. The likelihood for each plane as a function of offset
can be further factorized across the pixels in each image, because
their shot noise is also independent:

p (b, 04) = [ ], Poiss[s] (i.1) i —x.j = )]

where (i, ]) index into the sample and reference images (in this
case the pixels of the green channel of the horizontal plane).

This computes the likelihood of seeing that photon count from
a Poisson distribution with a mean rate given a particular offset
from the reference plane. The likelihood was treated as indepen-
dent under movement perpendicular to the plane (notice z does
not show up on the right side above), but this constraint could

be relaxed using a three-dimensional reference volume instead of
plane.

Finally, the point estimate of position for that frame is com-
puted as the expected value of position:

E[x,y,z] :ffjx-y~z-p(x,y,z|s; u) dx dy dz

X,z
p (x, ¥, z|s; u) = I/Zp(slx, v, z; u)p (x, ¥, z; u)

where 1/Z is a normalization constant to make the probability
function integrate to one and p(x, y, z; u) is treated as a constant
prior, so can be ignored.

The algorithm was validated visually over many sessions by
watching the movies and the motion inference (see for exam-
ple Supplementary Movie 2). To determine whether to include
a scan for subsequent analysis we low pass filtered the motion
traces at 2Hz and discarded any sessions with a movement
range of more than 3.5pum of movement laterally or 4.5 pm
of movement axially. Out of 20 sites recorded for this study,
nine met this stability criterion. (http://toliaslab.org/code-and-
algorithms/aod-motion-tracking-algorithm/).

VISUAL STIMULUS

Anesthetized mice were presented with full field drifting gratings
with 90% contrast, luminance of 10 cd/m?, spatial frequency of
0.08 cycles/°, and temporal frequency of 2 cycles/s. Two sets of
stimuli were presented to each imaging site: the first to map direc-
tional tuning and the second to characterize the correlation struc-
ture. Directional tuning was mapped using a pseudo-random
sequence of drifting gratings presented at sixteen equally spaced
directions of motions changing at 2 Hz for 3 min. The correlation
structure was mapped by presenting a drifting grating with the
same parameters as described above. In this case each direction of
motion was presented for 1s, followed by a gray screen for 1 s. The
direction of the grating was randomly selected for each presenta-
tion as either upward or rightward drifting grating. Each stimulus
condition was presented at least 180 times.

DATA COLLECTION AND PREPROCESSING

Three-dimensional structural volumes were acquired with the
3D-RAMP system. Cells of interest were selected by clicking on
a cell, and then fitting a 5pum radius sphere to the neuron to
identify the 3D center. The recorded cells were between 100
and 300 pwm below the pial surface. During random-access scan-
ning the system repeatedly hops between the selected neurons to
sample the calcium signals (Figures 4, 5).

The collected fluorescent traces were deconvolved to recon-
struct the firing rates for each neuron. First, principal component
analysis was performed on the population data, and the pro-
jections of the first principal component was removed from all
traces (Bonin et al., 2011), which we found removed common
mode noise related to small movement artifacts, and cardiovascu-
lar artifacts (Figure 3). The denoised result was bandpass filtered
between 0.1 and 20 or 100 Hz. Inferred firing rates were estimated
using a fast non-negative deconvolution algorithm (Vogelstein
etal., 2010).
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FIGURE 4 | Recording from a population of neurons with 3D-RAMP
microscope. (A) A 3D structural image is acquired by sequentially hopping
through all the points in a 200 x 200x 100 wm volume (250 x 250x 50
points were acquired). Only a subset of the axial sections is shown. Cells
are selected for functional calcium signals from each of the planes in the
volume by clicking on the center of the cell bodies. In this data set 133 cells
were recorded during spontaneous activity, of which 30 are shown here
and are labeled green. (B) A plane from the middle of the stack,
demonstrating that cells are clearly visible against the neuropil. (C)
Functional calcium signals from 30 out of the 133 cells simultaneously
recorded (each with 375 Hz sampling rate) are shown with the numbers
corresponding to locations marked in (A,B). Clear calcium transients are
visible from the majority of cells. All signals were downsampled to 20 Hz
for visualization. Signals from all of the 133 cells recorded are shown in
Supplementary Figure 2.

Spikes were extracted from juxtacellular recordings (see meth-
ods above) by bandpass filtering from 600 to 6000 Hz and detect-
ing threshold-crossing events. The spike detection threshold was
set manually for each cell and only cells with a high SNR were
included. The quality of reconstruction was assessed by bin-
ning both spikes and deconvolved traces with time bins from
10 to 500 ms and computing the Pearson correlation coefficient
(Figure 6).

DATA ANALYSIS

For computing tuning and noise correlations, data were low
pass filtered at 20Hz before deconvolving as we did not
need higher temporal precision. Significant orientation tun-
ing was determined by fitting a cosine function r(6;6,) =

A - cos (W) to the responses when presenting 16 direc-

tions of motion. A cosine function was fitted instead of a von
Mises one because the subsequent analysis only depended on pre-
ferred orientation, and fitting additional parameters in a model
reduces statistical power (however in Figure 7 where we compare
tuning widths we fitted von Mises functions). A significant model
fit was assessed by bootstrap analysis: first surrogate datasets were
generated by randomly resampling responses 10,000 times with

Py Pty
ntiittneiefe e

25% AF/F 20 560

FIGURE 5 | Functional calcium signals recorded during spontaneous
activity from data sets with different number of simultaneously
recorded cells. All data sets were collected from nearby sites. Locations of
cells whose traces are shown on the left panel are labeled green on the
right panel. Remaining cells recorded but whose traces are not shown are
labeled red. The population sizes are: (A) 27 cells (at 1.8 Khz sampling for
each cell), (B) 133 cells (375 Hz), (C) 205 cells (244 Hz), and (D) 411 cells
(122 Hz). Functional traces are downsampled to 20 Hz for visualization and
comparison. All traces from these datasets are shown in Supplementary
Figures 2-5.

replacement while preserving the original presented orientation
labels to create artificial datasets. The same cosine fit was per-
formed for each surrogate dataset, and a cell was significant if the
model fit to the real data explained more variance than model fits
to 95% of the shuffled data sets.

The noise correlation matrix was computed separately for
presentation of horizontal and vertical drifting gratings. For
each trial the response for a neuron was defined as the
deconvolved response averaged during the 1-s stimulus pre-
sentation. The correlation coefficient between two neurons for
either horizontal or vertical stimulus trials was computed as
the Pearson’s correlation coefficient between their responses,
(Figure9).
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FIGURE 6 | (A) Two sample cells recorded with functional imaging and
electrophysiology. The top trace shows the downsampled fluorescence
trace, the vertical lines show when spikes occurred, and the bottom trace
is the deconvolved fluorescent trace. (B) The correlation coefficient
between the spiking and the deconvolved trace binned at different time
scales from 10 to 500 ms for the two sample cells (C) The average
correlation coefficient between 18 cells with juxtacellular recordings and
their firing rate inference comparing removing the first principal component
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correlation coefficient between the spike count and the inferred firing from
12 cells recorded with both the AOD and galvanometric system. The error
bar shows standard error of the mean, and the AODs recovered spiking
significantly better than the galvos at 100ms (p < 0.05, paired t-test). (E)
The sizes of the populations recorded with both the galvanometric and
3D-RAMP system for data shown in panel d.
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FIGURE 7 | Directional tuning curve recorded with electrophysiology
from 5 cells (top) and the same tuning curves measured with
functional imaging (bottom). All five cells were significantly tuned for a
cosine fit as described in the methods. For each cell the fitted preferred
orientation and tuning width are written above (width measured as
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full-width half-max). The largest difference between the fitted direction
preferences as measured with electrophysiology from the measurements
with AOD imaging was 5°. However, the two cells with very narrow
tuning widths (B,E) have their width underestimated by the calcium
imaging.

RESULTS

3D IMAGING

The microscope was tested by measuring both point spread
functions and visualizing pollen grains. Point spread
functions were measured by imaging 100nm yellow-green
fluorescent beads (F8803, Invitrogen, CA) across the field-
of-view and fitting a Gaussian to them, demonstrating a
full-width half-maximum (FWHM) resolution of 0.5um
laterally and 3 wm axially (Figure1C). The 3D-RAMP scan-
ner was used to image the fine 3D structure of 100pum

fluorescent pollen grains, clearly resolving ~1 pwm-sized spines
(Figure 1D).

We determined that the size of the 3D field-of-view that
could be imaged simultaneously in vivo while retaining good
signal quality was 200 x 200 um laterally and 100 wm axially.
Using Oregon Green BAPTA-1 as fluorescent calcium indicator,
we obtained structural volumes by sequentially hopping between
points on a 3D grid within this volume. Horizontal sections
showed labeled neurons that were clearly distinguishable from
neuropil at all axial positions (Figure4A). We chose the grid
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spacing to trade off density of points against scanning speed, and
typically used a spacing of 0.8 um laterally and 1.5 pum axially.
This allowed reliable identification of neurons and estimating the
location of their centers (Figure 5).

MOTION TRACKING

Identifying movement during scans and only analyzing stable
data is critical for characterizing population activity. We used
a novel motion-tracking algorithm (see methods for details) to
estimate movement from the pair of movies from motion planes
(Figure 2A) and discard sessions with too much movement (see
methods for details).

Using this approach, we were able to distinguish stable record-
ing periods from those with significant tissue movement. Some
sessions showed a steady drift that could also be identified
by comparing the volume image before and after collecting
functional traces (Figure 2B). However, other sessions exhibited
abrupt movements, with no net drift (Figure 2C). In these cases,
the simultaneous motion tracking was important in order to
decide whether to keep the data for analysis. The position of each
frame is computed independently, so the high frequency noise
present in the traces in Figure2 provides an indication of the
amount of noise in the inference, which is well below 1 pum.

Next we showed that the cardiac and respiratory cycles induced
movement that changed the measured fluorescence from the
neurons. We performed simultaneous heart rate monitoring
while imaging neural activity and tracking motion with our 3D-
RAMP system. The spectrogram of the tissue movement showed
a frequency band that tracked the heart rate remarkably well
(Figure 3A) and the same frequency band was also present in the
first principal component of the population activity (Figure 3B).
We also monitored the respiratory rate of the animal and found
that this contributed to a frequency band (~3 Hz) in both the
motion estimate and the first principal component of the pop-
ulation activity (Figure 3). Despite the fact that the movement
from the heartbeat and respiratory cycle had an influence on the
functional traces, it was very small in magnitude, having only a
root-mean-squared amplitude of 0.35 um and range of about a
micron (Figure 3C). To exclude the possibility the motion esti-
mate came about from neuropil contamination or non-specific
changes in fluorescence due to tissue oxygenation we computed
the spectogram of the mean intensity of the motion tracking
planes and did not observe any frequency bands (Figure 3D).

IN VIVO FUNCTIONAL IMAGING

We acquired functional data by sequentially hopping between
neurons and sampling their calcium fluorescence. It has been
shown that imaging neurons close to their center is important
for reducing the amount of neuropil contamination (Gobel and
Helmchen, 2007). To optimize this, coordinates were selected
through a computer-assisted process that refined selected loca-
tions to the 3D center of neurons.

Calcium events were detectable from neurons throughout the
3D volume (Figures 4C, 5). As with any imaging technique, there
is a tradeoff between the number of cells and the number of
photons per cell, where more photons per second from a cell
translates to a higher signal-to-noise ratio. With 3D-RAMP, the

excitation volume sequentially “hops” between neurons, so the
amount of time collecting photons from each cell is inversely pro-
portional to the number of cells recorded. Time spent recording
from motion-tracking planes also reduces the time available to
collect photons from neurons.

In Figure 5 we show a typical experiment demonstrating how
signal quality varied with the number of cells imaged. In this case
we imaged four population sizes from the same recording site: 27
neurons sampled at 1.8 kHz, 133 at 375 Hz, 205 at 244 Hz and
411 at 121 Hz, (Figure 5). Clear calcium transients were visible
from the majority of cells at all population sizes, although by
400 cells the amount of baseline noise begins to visibly increase.
To illustrate the quality of our data, we show the traces of all
cells recorded in these example four data sets (776 traces in total,
Supplementary Figures 2-5).

FIRING RATE INFERENCE

We performed simultaneous functional imaging and juxtacellular
recordings from 18 neurons to quantify how well we could detect
spiking activity from the functional imaging data. Figure 6A
shows two examples of single-cell fluorescence signals, their
recorded spiking activity, and the inferred firing rates computed
using a fast non-negative deconvolution algorithm (Vogelstein
et al., 2010). Bursts of spikes reliably caused the typical rapid
rise in fluorescence followed by an exponential decay known as
a calcium event. Although single spikes usually caused the same
calcium events, they could not be reliably detected in all cells.

To quantify the quality of reconstruction at various time scales,
we computed the correlation coefficient between the measured
spikes and the inferred firing rates with bin sizes ranging from
10 to 500 ms (Figure 6C). When the spikes were binned at 50 ms,
the average correlation coefficient across all 18 neurons between
the spike counts and inferred firing rates was 0.48. This value
increased to an average of 0.72 for a bin size of 250 ms and sat-
urated by 500 ms to an average correlation coefficient of 0.76
(Figure 6C), which is the duration used here for measuring both
orientation tuning and noise correlations for subsequent analysis.

We found that removing the first principal component of
the activity recorded with AODs improved the reconstruction
accuracy at all time bins from 10 to 500 ms (Figure 6C, p <
0.05, pairwise ranksum test). Importantly, the component that
was removed correlated remarkably well with tissue movement
(Figure 3) and increased the fraction of neurons that were sig-
nificantly tuned to orientation (32% with PC removal vs. 22%
without, N = 1451).

Next we compared the accuracy of reconstructing firing rates
from data collected with the 3D-RAMP system and with data
from a galvanometric scanner. We imaged with both the 3D-
RAMP and a galvanometric system while recording juxtacellularly
from the same neurons. We found that firing rates could be
inferred more accurately with the 3D-RAMP system compared
to the galvanometric system. Specifically, the correlation between
the inferred firing rates at 100 ms bins and the measured firing
rates was significantly higher for the 3D-RAMP system than the
galvanometric system (Figure 6D, 3D-RAMP mean: 0.59, galvo
mean: 0.44, p < 0.05, paired t-test, N = 18 cells). Importantly,
the 3D-RAMP also has the advantage that it recorded on average
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FIGURE 8 | The three-dimensional visualization of orientation
preference for a single recording site. Black spheres indicate cells that
were not significantly tuned. The color of the other spheres indicates the
orientation preference. The column on the right indicates the corresponding
orientation indicated by the colors.

three and a half times more cells than the galvanometric scan-
ner (Figure 6E). Moreover, the reconstruction accuracy for the
3D-RAMP system was higher than published values using a reso-
nance scanner system (3D-RAMP mean correlation 0.69, N = 18;
resonance scanner mean correlation 0.53, N = 8 (Bonin et al.,
2011); bin size 240 ms for both systems). In the case of the data we
acquired with a galvanometric scanner (at 10 Hz), removing the
principal component did not improve the reconstruction accu-
racy and thus was not performed (Figure 6). This difference is
probably because at the high sampling rates of the AOD system
the principal component analysis captures common noise arti-
facts, but at the lower frequencies of a galvanometric scanner it is
dominated by true functional activity.

ORIENTATION TUNING

Next we verified that we could reliably and accurately measure
the same tuning curve for V1 neurons with functional imaging as
with electrophysiology. We recorded juxtacellularly from five cells
in V1 while presenting oriented drifting gratings and computed
their tuning curves from the inferred firing rate (Figure 7). For
all five cells the preferred orientation was recovered accurately to
within 5°. For three of the five cells the tuning width was recov-
ered within 5° but for the two with the narrowest tuning the width
it was underestimated by 13 and 15°, respectively (Figures 7B,E).
This effect is most likely due to the non-linearities of two-photon
imaging and spike inference suppressing weaker responses more
than stronger ones. Overall, we found that 32% of 1454 neurons
(9 sites, 6 mice, example site shown in Figure 8) were significantly
tuned to stimulus orientation (see methods for details).

CORRELATION STRUCTURE

We next estimated the noise correlation structure. We only ana-
lyzed recording sites that met the stability criterion described in
the Methods section (motion-tracking subsection). After map-
ping the directional tuning of populations of neurons in V1, we
randomly interleaved gratings moving either upwards or right-
wards to measure the noise correlation structure under these
two stimulus conditions. Each stimulus was repeated at least
180 times. An important advantage of our technique is that we
can estimate the full correlation matrix of a local population of
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FIGURE 9 | (A) The mean noise correlation between pairs of tuned neurons
vs. their difference in orientation, with error bar representing the standard
error of the mean. This shows a limited range structure (B) Histogram of
the noise correlation value for all pairs of neurons. (C) The correlation
structure from a single site with a simultaneously recorded population of
108 tuned neurons in response to presentation of horizontal (0°) and
vertical (90°) gratings drifting upwards and rightwards, respectively. The
neurons are ordered by their preferred orientation, which are indicated on
the axes. The white line indicates the presented stimulus. It is clear that
there is a higher correlation amongst neurons when the stimulus is near
both of their preferred orientations. (D) This effect was characterized by
collapsing across 9 datasets. For each stimulus the noise correlation, r, was
measured for a pair of cells, and the difference between the stimulus
(s,either horizontal or vertical) and the preferred orientation (6) for each cell
(AB = s — 0) was computed. The set of points from all the pairs of cells
under both stimuli, (A61, AB2, r), were then smoothed using a Gaussian
kernel (Hastie et al., 2009) with a standard deviation of 10°. There is
structure in both diagonal directions reflecting both limited range
correlations and stimulus dependent changes in the correlation structure.
(E) The presented stimulus orientation was shuffled to demonstrate what a
purely limited range correlation structure with no stimulus dependence
would look like. (F) Average noise correlation from all datasets for pairs of
neurons with similar preferred orientation (within 10°) when the stimulus
was near their mean preferred orientation (<45° column) vs. further away
(>45°). **p <1e-4.

neurons in contrast to electrophysiological methods, which can
measure only a small sparse subset of its entries.

We found that neurons in the mouse visual cortex show
a “limited-range” correlation structure (15,000 pairs of neu-
rons, Figure9A), where more similarly tuned neurons are
more correlated—in agreement with previous electrophysiolog-
ical studies in non-human primates (Kohn and Smith, 2005;
Ecker et al., 2010) and mice (Denman and Contreras, 2013). For
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neurons tuned within 10° of each other, the median noise correla-
tion was 0.019 (mean 0.040) compared to neurons tuned between
80 and 100° apart which had a median of —0.01 (mean 0.004,
p < 0.05, ranksum test). The distribution of noise-correlations
has a long positive tail although it contains a small fraction of
the neurons, which indicates that despite the fact the noise cor-
relations on average are low, some pairs are strongly coupled
(Figure 9B).

We found that the noise correlation structure was also stimu-
lus dependent. When horizontal gratings were presented, the set
of cells preferring horizontal gratings had higher noise correla-
tions than when vertical gratings were shown. The reverse was
true when vertical gratings were presented (Figure 9C for sin-
gle example site). To characterize the stimulus dependence of
the correlation structure for all of our data, we computed the
average noise correlation as a function of the difference between
the stimulus and the preferred orientation of significantly tuned
pairs of neurons (15,000 pairs of cells, 9 recording sites, 6 mice,
Figure 9D). For each stimulus the noise correlation, r, was mea-
sured for a pair of cells, and the difference between the stimulus
(s,either horizontal or vertical) and the preferred orientation (8)
for each cell (A8 = s — 0) was computed. The set of points from
all the pairs of cells under both stimuli, (A8;, A, r), were then
smoothed using a Gaussian kernel (Hastie et al., 2009) with a
standard deviation of 10°.

To show what the data would look like with no stimulus-
dependence but preserving the limited-range structure, we
repeated the analysis described above. However, for each pair of
neurons we replaced the stimulus value, s, with a random stimu-
lus orientation from 0 to 180 (Figure 9E). The surrogate dataset
shows a diagonal-constant structure, where the noise correlation
is constant along one diagonal direction and not the other. This
is clearly different than the real structure shown in Figure 9D,
which changes in both diagonal directions.

In order to quantify the stimulus dependence amongst pairs
of neurons with a similar preferred orientation (within 10°), we
measured the noise correlation when the difference between the
stimulus and the average preferred orientation of the cells was
less than 45° (mean = 0.051, Figure 9F) and when the difference
was greater than 45° (mean = 0.043, Figure 9F) There was a sig-
nificant difference between these two cases with stimuli near the
preferred orientation producing higher noise correlations for the
same pairs of neurons (Figure 9F, ranksum test, p < le-4).

DISCUSSION

We developed a 3D-RAMP microscope that can acquire func-
tional calcium traces from large populations of neurons in vivo
arbitrarily distributed in a 3D volume with excellent signal qual-
ity and high temporal resolution. The ability to rapidly focus on
arbitrary locations in 3D makes it possible to apply two-photon
imaging techniques to study the interactions amongst neurons
spanning different cortical depths in vivo. This method enables
one to record from hundreds of nearby neurons distributed in
3D (e.g., >400 cells within a 200 x 200 x 100 pm volume at a
sampling rate of 120 Hz).

Simultaneous motion tracking is a challenge for any discontin-
uous hopping-based scanning technique that does not produce a

structural image. Importantly, motion artifacts will contaminate
the measured signals and cannot be straightforwardly distin-
guished from functional calcium fluorescence. Because one of
the main motivations of 3D-RAMP scanning is to study large-
scale population activity, such artifacts can significantly alter the
results and in particular the correlation structure. Our approach
enables, for the first time, simultaneous 3D tissue motion track-
ing by interleaving movies over high contrast structures with
random-access functional scanning (3D-RAMP). This is abso-
lutely necessary for any study of the structure of population
activity using 3D-RAMP. Our implementation allows aborting
scans with too much movement online or rejecting them post-hoc.

The imaging locations required for motion tracking consume
time that could be otherwise used to collect functional traces,
which will reduce the effective signal-to-noise ratio. For studying
the tuning properties of neurons, simultaneous motion tracking
is less necessary because movement that is uncorrelated with the
stimulus can average out. However, tracking is an absolutely nec-
essary cost for studying correlated activity in vivo because of the
susceptibility of these measures to non-stationary (Brody, 1998;
Bair et al., 2001; Ecker et al., 2010) such as movement. Comparing
the position of the volume between the start and end of the exper-
iment is not sufficient as brief and large motion transients can
and do occur in the preparation (e.g., Figure 2C). The fraction
of time spent collecting motion-tracking data is determined by
the number, resolution, and sampling rate of the motion planes.
We found two planes of 10 x 10 points at 10 Hz provided precise
motion tracking while only consuming 15% of the imaging time.

An advantage of the FPGA scanner we implemented is that
it can be extended to calculate the motion of the preparation in
real-time and provide correction signals. Slower movements can
be corrected by controlling the objective manipulator in 3D, and
faster movements can be corrected within the FPGA itself by shift-
ing the coordinates of all the points by the amount of movement
measured.

We found that the inferred firing rates from the fluorescent
activity correlated well with simultaneously recorded spike counts
and our 3D-RAMP scanner outperformed traditional galvano-
metric scanner imaging the same cells, even while recording from
a larger population (Figure 6). The 3D-RAMP scanner also out-
performed published values for a resonance scanning system
(Bonin et al., 2011). In this work, we did not optimize the param-
eters of the spike inference algorithm, as this requires many more
neurons with simultaneous electrophysiology to robustly cross-
validate the reconstruction accuracy. Accordingly, our current
results should be taken as a lower bound on the performance of
our 3D-RAMP system.

The method of firing rate inference used in this work
(Vogelstein et al., 2010) does not estimate individual spike times
and thus does not allow determining when false positives and false
negatives occur. Extending this work to spike train estimation will
be an important advance that will enable quantifying these types
of errors and comparing the detectability of single isolated action
potentials vs. bursts of spikes. When developing such algorithms
it is critical to have large enough datasets to both train and cross-
validate the algorithm in order to determine the error rates on
novel data. In addition, a validated method with the ability to
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separate the cells that can be reconstructed accurately from those
that cannot be would be a critical advance in the field.

Recently Katona et al. (2012) have demonstrated 3D-RAMP
imaging from the visual cortex of the mouse. There are a num-
ber of similarities and differences between our system and theirs.
The optical principles behind both systems are essentially iden-
tical to those described previously (Reddy and Saggau, 2005):
four AODs are used in combination with the first pair provid-
ing axial focusing and the second pair providing additional axial
focusing and lateral positioning. One difference is that the system
described here places a telescope between each AOD in order to
align the pivot point to the backfocal aperture of the objective.
The Katona system used highly optimized AODs that allowed for
a larger field of view compared to our system. It is challenging
to compare the signal quality between the two systems because
they did not report simultaneous in vivo functional imaging and
electrophysiological recordings. The critical advance of our sys-
tem over previous random-access imaging implementations is the
simultaneous motion tracking as well as the quantification of sig-
nal quality, both of which are absolutely necessary for studying
the larger scale properties of population activity. In addition our
control system allows continuous recording from complex scan
patterns.

We used the 3D-RAMP system to analyze the 3D microcircuit
correlation structure. Measuring noise correlations is challenging.
For example, non-stationarity or poor signal quality can signifi-
cantly bias their estimate (Brody, 1998; Bair et al., 2001; Ecker
et al., 2010). Measuring them with two-photon presents a host
of additional challenges such as: (1) noise in the fluorescence
signal can reduce the measured values, (2) artifacts such as neu-
ropil contamination, anesthesia related activity, or movement can
increase them, (3) the spike to fluorescence transformation is
non-linear. For these reasons the absolute value measured with
two-photon should not be directly compared to electrophysiol-
ogy. For example, while removing the first principal component
from the fluorescence data improves reconstruction accuracy and
increases the fraction of neurons that are significantly tuned to
orientation, it also reduces the average correlation value. While
most of this reduction reflects removing noise artifacts from
the recording method, such as submicron movement from the
cardiac cycle, some of it could reflect correlated network activ-
ity. Despite these caveats, the ability to record the activity from
hundreds of adjacent neurons makes two-photon imaging and
in particular 3D-RAMP a powerful method for analyzing the
microcircuit activity structure.

We used our method to map the noise correlation structure
with dense coverage of the neurons within a small microcircuit.
To our knowledge, this is the first time the noise correlation struc-
ture of such a large and dense microcircuit has been measured
in vivo. The noise correlation exhibited a limited range structure,
with more similarly tuned neurons being more correlated. This
is in agreement with electrophysiological measurements from
macaque visual cortex (Kohn and Smith, 2005; Ecker et al., 2010)
and mice (Denman and Contreras, 2013) and also consistent with
connectivity mapping studies in mouse visual cortex (Ko et al,,
2011, 2013).

In many studies of noise correlations in visual cortex, multiple
orientations are presented but the noise correlation is averaged
across stimulus conditions. These studies have also demonstrated
the averaged noise correlation is higher for pairs of neurons with
higher average firing rates (Kohn and Smith, 2005; Ecker et al.,
2010). By presenting just two stimuli many times (at least 180
repetitions in each condition), we were better able to charac-
terize the correlation structure in each stimulus condition and
detect systematic changes. We found that in addition to a lim-
ited range correlation structure, the noise correlation changes in a
stimulus dependent manner. Specifically, pairs of similarly tuned
neurons are more correlated when presented with a preferred
stimulus compared to when presented a non-preferred stimulus.
Josi¢ et al. (2009) has shown this kind of change in the correla-
tion structure can, in certain conditions, increase the information
capacity of a neural population. Our result is not consistent with
a correlation structure that only depends on the geometric mean
firing rate averaged across conditions, but might be explained by
the correlation depending on the firing rate under each stimu-
lus condition (Smith and Kohn, 2008). It is challenging to test
for this explicitly with two-photon imaging, because across neu-
rons the size of the single action potentials evoked calcium event
is variable. This introduces an arbitrary scale to the inferred firing
rate.

Our current understanding of the impact of noise cor-
relations on coding accuracy often relies on extrapolating
from pairwise measurements to the larger populations (Zohary
et al,, 1994; Abbott and Dayan, 1999; Sompolinsky et al.,
2001; Wilke and Eurich, 2002; Averbeck and Lee, 2004;
Shamir and Sompolinsky, 2004). However, there is little to
no empirical evidence to constrain or confirm these extrapo-
lations, which can profoundly change the results (Shamir and
Sompolinsky, 2006; Ecker et al,, 2011). In order to directly
test the role of correlations in neural coding it is impera-
tive to decode from empirically measured populations (Berens
et al., 2012). The 3D-RAMP method is ideally suited to
studying information coding of large populations of nearby
neurons.

The capabilities of in vivo 3D-RAMP microscopy that we
demonstrate here open an exciting new dimension in the analysis
of neural microcircuits. For example, we can record from many
cells simultaneously in the vertical dimension with high temporal
resolution in order to study information processing along micro-
colums in layers 2/3. The ability to selectively record from specific
cells of interest arranged in 3D, also opens the window to study
the computations single neurons within the microcircuit perform
on their synaptic inputs (Wickersham et al., 2007; Marshel et al.,
2010).
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